Anticipating Defenses in a MV Crash Case

CONTENTS

Chapter 1 Evaluating the defense expert witness		
Doing your homework	11	
Training, experience, and expertise	11	

Attacks on the investigation and evidence	12
Educating the jury to reject the defense theory	13
Use of an evidence checklist	16
Defense expert has a favorite tactic	17

Chapter 2: Speed from braking evidence

Braking evidence, tire marks

C	Contamination – traffic through the scene	19
Т	Fire marks not matched to defendant's vehicle	19
Т	Fire marks indicate a brake problem	19
	Fire marks are different lengths	20
	Fewer than four tire marks	20
	Average skid distance is incorrect	21
	No at-scene inspection of tires	22
	ction and drag factor	
	ABS lower drag factor	22
	Skid test is inaccurate	23
	Drag factor outside a published range	24
	Drag factor is velocity dependent	
	Vrong drag factor for tumbling vehicle	26
	Overlapping tire marks analyzed incorrectly	27
	Chemical testing of tire mark residue	28
	Expert uses significantly lower drag factor	29
	Drag sled measurement of drag factor	29
	Sled measurement was not corroborated	30
0	Drag sled was incorrectly used	30
	There is no video of the drag sled test	31
	Drag sled scale calibration not checked	32
	Accelerometer used to measure drag factor	33
	Exemplar vehicle invalidates the measurement	33
A	Accelerometer was not recently calibrated	34
	Cross exam attacks on LE witness	34
0	Drag factor test not done in a timely manner	35
	Digital accuracy" makes accelerometer better	35
	.	
A	Accelerometer is a "Black Box"	36
E	Expert criticizes the LE use of the accelerometer	37
	Measurement is much lower than LE	37
Brake pe	ercentage, brake efficiency	
N	Aotorcycle weight distribution was taken from a chart	38
0	Defense expert uses wrong brake percentage	40
	Vrong brake efficiency - inoperable brakes	
V	Vrong brake efficiency weight distribution chart	41
	om skid equation	
-	Veight is not in the equation, the equation is invalid	42
	Road & Track" defense	
C	Calculations are sensitive to uncertainties	43

Uncertainties simply add together 44	4		
Speed calculation was rounded down45	5		
Unequal tire pressures affect calculations46	6		
Chapter 3: Single vehicle collisions			
What is a critical speed yaw (CSY)? 47	7		
General defenses			
Operator ID is the defense 47	7		
Passenger caused the crash49	Э		
Road design/defect caused the crash			
Mechanical failure caused the crash	C		
Attacks on the investigation and measurements			
State did not secure the vehicle	2		
A single tire mark is not a CSY53	3		
Tire marks are ABS pre-impact braking			
Curved tire marks are rear emergency braking 54			
No visible crossover – not a CSY54			
No visible striations in the yaw marks			
Expert criticizes measurements			
Measurements made too late in the yaw			
Length of yaw was not measured			
Approach to the impact not documented			
Calculations using the CSY equation			
Yaw marks are not truly circular	8		
Only one measurement was made			
Prior curve is inconsistent with calculated speed 59			
Yaw was post-impact60)		
Braking during yaw invalidates CSY equation)		
CSY analysis is invalid - vehicle has ESC	2		
Publication claims the CSY is invalid62	2		
Drag factor used in the CSY measured incorrectly63	3		
Yaw starts on two surfaces – cannot use the CSY 63	3		
The radius not adjusted for vehicle CM64	4		
CSY after an airborne motion65	5		
CSY calculation after an impact65	5		
Measurement uncertainties affect the calculation	6		
Conservation of energy			
Defense attacks the knowledge of the State's expert 68	3		
Chapter 4: Pedestrian collisions			
General attacks or challenges			
Evidence was moved71	1		

Evidence was moved	71
To scale drawing was not verified	.71
Investigator did not have specialized training	71
Minimizing the witness' experience	71
Concession in a hit-and-run case	72
No vehicle debris at the scene	72
Expert uses a published evidence list	72
Concession - not a human factors expert	73
Vehicle has been released	.73
Published chart used	.74
Police used an assumption	74
Non deployment of an air bag	75
Speed from lamp examination	.76

Attacks on the investigation	
Witness position was not documented	78
Witness view was obstructed	78
Pedestrian was moved	79
Bumper height was not documented	79
No leg injury	79
Location of a leg injury	80
A hat as evidence of the POI	
Shoes as proof of the POI	81
POI from crash debris	
Estimates of vehicle speed	
Speed from braking evidence	83
Speed from slide of pedestrian's body	
Expert uses incorrect drag factor	
Pedestrian throw equations	
POI/FRP of body is uncertain	86
Incorrect drag factor used in throw equation	
Searle calculation is irrelevant	
Landing point unknown	
Searle equation misapplied	
Searle was misapplied	
Defense expert uses commercial software	
Throw of pedestrian's shoe	
Searle equation overestimates speed	
Did not measure the actual drag factor	
Expert uses head strike chart	
Expert applies head strike chart incorrectly	
Expert applies chart incorrectly	
Collision avoidance and human factors	92
Head strike chart used incorrectly	02
Human factors experts	
•	
Walking speed	
"accepted" value as an assumption	
Expert assumes a single value	
Defense expert attacks State's assumptions	97
Visibility issues	00
Different vision than the defendant	
Pedestrian's clothing limits visibility	
Glare from oncoming headlights	
State's visibility test is invalid	101
Headlight illumination distance	102
Operator perception-reaction time	4.0.1
The defense expert assigns a value of 1.5 seconds	
PRT value outside Olson range	
Expert uses only data for sober operators	
Expert uses a published chart	
Expert makes assumptions	
Low BAC would not affect the ability to operate	107

Chapter 5 Other cases

Intersection crashes
Expert uses PRT to calculate a speed
Incorrect acceleration into an intersection calculated 112
Expert uses wrong drag factor in calculation113
Defense attacks the evidence in the momentum
Head on and rear end crashes
Momentum used in a near head-on collision
Defense expert does Monte Carlo analysis 115
Defense claims discovery or Brady violation
Point of impact in a crossing the center line case
Gouge in roadway incorrectly as the POI 117
Other vehicle crossed over into my lane
Mechanical failure as cause
The passenger caused the collision
Momentum used for vehicles of different weight 119
Expert intentionally misuses momentum
Expert calculates with wrong weight 120
State did not actually weigh the car
Attacks on EDR evidence
Data is not from this crash 122
Times in the EDR report are not prior to impact
Most recent version of software was not used
The State's witness is not certified
Investigators did not have a warrant
EDR speeds are higher than reconstructed speeds 124
Spoliation - removal of the EDR damaged the vehicle 124
Vehicle has been released – cannot image the EDR 124
EDR opinions by defense expert
EDR speeds are incorrect 125
EDR image has not been corroborated 125
The EDR report has been altered
A power interruption caused incomplete data
Expert's opinion is based on incomplete data
Not necessarily true speeds of the car
EDR module not from the defendant's vehicle
EDR data is inaccurate128
Operator ID
Operator ID issues 128
Operator ID incompletely investigated
Forensic evidence was not photographed
Air bag evidence was misinterpreted 130
5
APPENDIX