MS FROM INITIAL IMPACT

.. $1 . . \mid$ Video clips\JaywalkinoORM.wmv

RECONSTRUCTION ISSUES:

- WHERE DID THE IMPACT HAPPEN (POI or AOI)?
- HOW DID THE PEDESTRIAN GET THERE ?
- WHAT WAS THE VEHICLE SPEED?
- WAS THE COLLISION AVOIDABLE ?

The impact may lift the pedestrian out of their shoes.

CSI

PEDESTRIAN STRUCK FROM REAR

4/1000 sec LATER

.. P ped forward proj.wmv

DEFENSE EXPERT MAKES FALSE
 STATEMENT ABOUT POINT OF IMPACT

Defense expert report:

"The point of impact can be determined by where the first shoe is located, as a pedestrian is usually knocked out their shoes by an impact with a car."

Defense expert report:

"The point of impact can be determined < wh $\quad \geqslant+$ first shoe is
is ustri.
BULLSCHTEIN shoestr."

Garmin Forerunner 210 sport watch

180 hr memory
USB connect to computer

Path of pedestrian

HOW DID THE PEDESTRIAN GET THERE ?

- EYE WITNESSES
- PATH OF PEDESTRIAN
- PEDESTRIAN INJURIES
- WALKING SPEED OF PEDESTRIAN
- PARKED VEHICLES ?

HOW DID THE PED GET THERE?

Pedestrian walking parallel to path of car, or
pedestrian stationary when struck

In line damages

HOW DID THE PED GET THERE?

Pedestrian crossing the path of the car

scrapes on bumper

The medical examiner or forensic pathologist may be a valuable witness.

HOW DID THE PEDESTRIAN GET THERE: THE AUTOPSY

How much time did it take for the pedestrian to reach the POI (AOI) ?

(pedestrian walking speed)

Walking speeds (ft/sec) for 30 yr old males:

Hermance
Thompson
Eubanks
Boise State U.
San Diego
4.80
6.50
3.39
5.53
$4.60-5.80$
4.21
6.53
4.80
6.50
?
$5.8 \mathrm{ft} / \mathrm{sec} \quad 90^{\text {th }}$ percentile value
$5.6 \mathrm{ft} / \mathrm{sec}$
$5.4 \mathrm{ft} / \mathrm{sec}$
$5.3 \mathrm{ft} / \mathrm{sec}$
$5.2 \mathrm{ft} / \mathrm{sec}$
$5.2 \mathrm{ft} / \mathrm{sec}$
$5.1 \mathrm{ft} / \mathrm{sec}$
$4.6 \mathrm{ft} / \mathrm{sec}<10^{\text {th }}$ percentile value
?
$5.8 \mathrm{ft} / \mathrm{sec}<90^{\text {th }}$ percentile value $5.6 \mathrm{ft} / \mathrm{sec}$ $5.4 \mathrm{ft} / \mathrm{sec}$
$5.3 \mathrm{ft} / \mathrm{sec}$
$5.2 \mathrm{ft} / \mathrm{sec}$
$5.2 \mathrm{ft} / \mathrm{sec}$
$5.1 \mathrm{ft} / \mathrm{sec}$
$4.6 \mathrm{ft} / \mathrm{sec}<10^{\text {th }}$ percentile value ?

Walking speeds (ft/sec)

 for 30 yr old males.6.50
$3.39 \quad 5.53$
$4.60-5.80$
4.21
6.53

San Diego
4.80
6.50

ALWAYS USE A

RANGE of values

Def expert will pick a single value!

WHAT WAS THE VEHICLE SPEED?

TIRE MARK EVIDENCE (BRAKING)

INJURIES (forensic pathologist)
THROW OF PEDESTRIAN BODY
HEAD STRIKE ON VEHICLE ???
EVENT DATA RECORDER ("black box")

THROW OF THE PEDESTRIAN'S BODY

Basic theory: The faster the striking vehicle speed, the farther the body will be thrown.

..... IVideo clipsltoll booth.wmv

Trajectory of pedestrian's body

throw distance

POI

The POI may be challenged The FRP of the pedestrian may be challenged.

Garmin Forerunner 210 sport watch

Throw distance from GPS data?

DANGER

MATH ANXIETY AHEAD

$$
V=\frac{V 2 f g d}{\cos \Theta+(f \sin \Theta)}
$$

$$
\theta=?
$$

GENERAL FORM OF THE SEARLE EQUATION, 1983

$$
V=\frac{V 2 f g d}{\cos \Theta+(f \sin \Theta)}
$$

$$
\theta=?
$$

THE THROW MUST BE UNINTERRUPTED

The general form of the Searle equation can be solved for a

MINIMUM SPEED MAXIMUM SPEED

$V_{\text {min }}$

 $V_{\max }=\sqrt{ } 2 \mathrm{fgd}$

$\mathrm{V}_{\text {min }}$
 WRAP and $J E C T I O N$

V_{ma}
PRO, gd
drag factor values from literature:

- Stcherbatcheff (combined air/ground) Collins $.40-71$

Collins .80

- Searle . 66 - . 79
- Limpert
- Eubanks, p. 93
- Becke

For the Searle equation: $f=0.79$ soft

Searle Speed chart:

Searle pedestrian Throw, minimum speed:

Speed of the pedestrian body

.....IVideo clipslped forward proj.wmv

The speed is for the pedestrian's body, not the vehicle.

SAE \# 831622

CRASH TESTS: 1983-1993

Field studies of pedestrian impacts (Aronberg, Bratten, Appel, etc.)

Each researcher developed an equation, based on the empirical data.

1993 - Searle validates his equation with the other researchers' data

SAE 2014-01-470 "Pedestrian Impact on Low Friction Surfaces"

The tests were done on snow or icy surfaces with low f values.

97 test collisions

Searle calculation validated in every test

Validation of pedestrian throw equations:

- Using video of pedestrian collisions
- Videos show throw equations are valid

Forensic Science International, Volume 257,
Dec 2015, pp. 409-412

Back to the case in Brooklyn

Speed from throw distance:

(without the math)

Appel
Searle
Sterbatchoff
Wood
Bratten
Limpert
55.0 mph
54.2 mph
49.2 mph
53.8 mph
51.3 mph
54.2 mph

Defendant stated that he braked

 just before hitting the pedestrians, but he was too close to them to stop.
Speed from throw distance:

(without the math)

Appel
Searle
Sterbatchoff
Wood
Bratten
Limpert
55.0 mph
54.2 mph
49.2 mph
53.8 mph
51.3 mph
54.2 mph

Speed from braking distance
52.4 mph

RESULT ONE: DEFENSE EXPERT DID NOT TESTIFY RESULT TWO: NO CROSS EXAMINATION ON SPEED

RESULT THREE: CONVICTION

braking (no skid marks) and exactly where impact took place (125 feet to 163 feet). He also reported other speeds as follows: Appel - 61 mph , Barzeley- 55 mph , and Collins 56 mph for the 163 foot distance and $54 \mathrm{mph}, 47 \mathrm{mph}, 49 \mathrm{mph}$ respectfully for the 125 foot distance. It is unknown, but he probably used the same. $66 f$ for all the other equations that he used. This may be a mistake also. I don't know what he may have used for the pedestrian C / M. The pedestrians were impacted just as they stepped off of the center island. Impact occurred to the left of center of the vehicle (2000 BMW 328 ci . One head/windshield impact was low just left of center and the other was on the left A-Pillar at the roof line.

My question is: isn't the impact vehicle suppose to be braking in order to use the pedestrian formulas and if one does not have specific proof a takeoff angle shouldn't the angle that gives the lowest speed be used which in this case is 33.4 degrees? Just trying to get the driver's speed down a little" minimum speed was calculated by police to be 44 mph . The speed limit for the roadway is 35 mph . The pedestrian who lived stated that they didn't see the vehicle before impact and both pedestrians were intoxicated. The driver was not under the influence.

You may also respond directly to my e-mail address.
Thanks for any assistance you can provide.

Just trying to get the driver's speed down a little.

<EONT COLOR="\#000099">Make a clean sweep of pop-up ads. Yahoo! Companion Toolbar.
Now with Pop-Up Blocker. Get it for free!
$</ E O N T><A$ HREF="http://US.click. yahoo.com/L5YrjA/ESIIAA/YQLSAA/UIYolB/TM">CClick

Not a forward projection

.....|Video clips\Deputy hit.wmv

The evidence without the in-car video

$$
\begin{aligned}
& V_{\min }=\sqrt{\frac{2 \mathrm{fgd}}{1+\mathrm{f}^{2}}} \quad \mathrm{~d} \approx 15 \mathrm{ft} \\
& \mathrm{~V}_{\min }=22 \mathrm{ft} / \mathrm{sec}=15 \mathrm{mph}
\end{aligned}
$$

DEFENSE:

EXPERT USES PUBLISHED
 CHART TO ESTIMATE DEFENDANT'S SPEED

PEDESTRIAN DYNAMICS:

Head Strike Locations v. Speed

Caviat:
"The head strike chart should never be used as the sole method of estimating vehicle speed."

TESTING PARAMETERS:

TEST DUMMY IS 5'10.7" TALL

VEHICLE HAS PONTOON NOSE

Expert incorrectly applies head strike chart to estimate speed:

"Tests have indicated a head strike near the end of the hood/bottom of the windshietchequates to a 25-30 mph impact speed. If I apply the general principle of impact strike locations, then the speed of the Windstar when it struck the pedestrian is between 25-30 mph."

THE HEAD STRIKE CHART DEPENDS ON : VICTIM HEIGHT VEHICLE GEOMETRY

Current consensus is that the head strike chart may have limited usefulness!

Garmin portable GPS

24 hours of data speed every second downloadable with Cellebrite

A new source of GPS data:

Insurance

 monitoring

VIDEO CAMERAS

store cameras

 traffic monitors parking lots municipal buildings parking garages in-car cameras
..... IVideo clips\Dayton.mpeg

WAS THE COLLISION AVOIDABLE?

Beware of the

 human factors expert!
HUMAN FACTORS:

perception-reaction time pedestrian walking speed

use a RANGE of values

Where does the analysis of avoidance start?

Point of First Possible Perception

(PFPP)

What is the point of first possible perception?

It is the vehicle location WHEN THE DANGER PRESENTS.

SIGHT DISTANCE

You are driving on a rural road ...

Did you see the pedestrian on the right side walking toward you ?

POINT OF FIRST POSSIBLE PERCEPTION

may not be the same as

SIGHT DISTANCE

State v. Williams

- daytime pedestrian collision
- Williams traveling 65 mph in posted 35
- jogger assumed to be running at a speed of $10 \mathrm{ft} / \mathrm{sec}$
- police determine PFPP at scene

Police report:

"I could see the crosswalk from at least 240 ft East of the stop bar. From the defendant's elevated seating position in the truck the crosswalk was visible to for a greater distance. With 240 ft of visibility, at the posted speed of 35 mph , the defendant had 4.66 seconds to initiate an evasive action."

My comment:

At 4.66 seconds before impact, the pedestrian, running at a speed of $10 \mathrm{ft} / \mathrm{sec}$, would have been 46.6 ft from the POI (out of sight).

POINT OF FIRST POSSIBLE PERCEPTION

may be the same as

SIGHT DISTANCE

On a rural road the defendant approaches a pedestrian from behind who is in the travel lane.

Beware of the "one size fits all" number !

Hospital policy

on pedestrian clothing ?

IN-CAR VIDEO

.....IVideo clips\LINCOLN PD.AVI

Impact Configuration

Impact Configuration

Impact Configuration

Backing the Car to the PFPP

d
 S_{c}
 use t_{w} to find d

 \square
PHASES IN IMPACT AVOIDANCE

The PRT process (and impairment)

The PRT process (and impairment)

Recognition may not be as simple as you think!

"There is no such thing as the human perception-reaction time."

Dr. Marc Green
visualexpert.com

PRT is a statistical concept !

Paul L. Olson

"... is a good upper bound

 estimate, meaning that a substantial percentage (i.e. 85\% to 95\%) of reasonably alert drivers will respond within 1.5 (1.6) seconds."
1.5 sec is the $90^{\text {th }} \%$ ile

1.5 sec is the $90^{\text {th }} \%$ ile

2.5 seconds "... large enough to include the time taken by nearly all (90\% of all) drivers under most highway conditions."

AASHTO Policy on Design
Standards for Highways

How would you perform in a PRT test?

$$
\begin{aligned}
& \text { What is a } \\
& \text { reasonable RANGE } \\
& \text { of PRT values? }
\end{aligned}
$$

"The probable range of perceptionresponse times for reasonably straightforward situations should be 0.75 to about 1.5 (1.6) seconds."

Paul L. Olson, Forensic Aspects of Driver Perception and Response, 1996, p. 187

WAS THE COLLISION AVOIDABLE?

COULD THE COLLISION BE
AVOIDED BY A SOBER DRIVER
OPERATING AT THE POSTED SPEED ?

reaction distance:

the distance the vehicle moves during the operator's PRT

braking distance:

 the distance it takes for the brakes to stop the vehicle

$$
d=\frac{S^{2}}{30 f \eta}
$$

TOTAL STOPPING DISTANCE

$$
\mathrm{d}_{\mathrm{s}}=1.47 \mathrm{St}+\frac{S^{2}}{30 f \eta}
$$

TOTAL STOPPING DISTANCE

30 mph , sober 106 ft

50 mph , impaired

Remember the walking speeds:

Thompson 3.39-5.53 ft/sec

The AVOIDANCE calculation

 starts by selecting a walking speed
Impact Configuration

$S_{w}=3.39-5.53$

Impact Configuration

$\mathrm{t}_{\mathrm{w}}=\mathrm{d} / 1.47 \mathrm{~S}_{\mathrm{w}}$
 $\mathrm{t}_{\mathrm{w}}=3.24-1.99 \mathrm{sec} \mathrm{S}_{\mathrm{w}}$

Backing the Car to a Prior Point

The chosen avoidability

d (available distance) $=190-116 \mathrm{ft}$ stopping distance $=159 \mathrm{ft}$

DEFENSES:

- OPERATOR ID (hit-run)
- PEDESTRIAN AT FAULT
- GLARE FROM ONCOMING VEHICLE
- UNCERTAIN POI or FRP OF BODY
- CONTAMINATION OF CRIME SCENE

htto://www.legalsciences.com

Podcasts \& Radio

Prosecuting Pedestrian Collisions

